classSolution { public: boolisValid(int row, int col, vector<int> &pos){ for (int i = 0; i < row; i++) { if (col == pos[i] || abs(row - i) == abs(pos[i] - col)) returnfalse; } returntrue; }
voiddfs(int row, int n, vector<int> &pos, int &res){ if (row == n) { res++; return; } for (int i = 0; i < n; i++) { if (isValid(row, i, pos)) { pos[row] = i; dfs(row + 1, n, pos, res); pos[row] = -1; } } }
inttotalNQueens(int n){ vector<int> pos(n, -1); int res = 0; dfs(0, n, pos, res); return res; } };
#include<iostream> usingnamespacestd; int n = 8, bd[10][10], res = 0;
boolisValid(int row, int col){ for (int r = row - 1, t = 1; r >= 0; r--, t++ ) { if (bd[r][col] == -1 || (col - t >= 0 && bd[r][col - t] == -1) || (col + t < n && bd[r][col + t] == -1)) { returnfalse; } } returntrue; }
voiddfs(int row, int sum){ if (row == n) { res = max(res, sum); return; } for (int col = 0; col < n; col++) { if (isValid(row, col)) { int tmp = bd[row][col]; bd[row][col] = -1; dfs(row + 1, sum + tmp); bd[row][col] = tmp; } } }
intmain(){ for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) scanf("%d", &bd[i][j]);
dfs(0, 0); cout << res << endl; }
N Queens Puzzle
Description
The “eight queens puzzle” is the problem of placing eight chess queens on an 8 × 8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - “Eight queens puzzle”.)
Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (Q1, Q2, ⋯, QN), where Qi is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens’ solution.
Input Specification
Each input file contains several test cases. The first line gives an integer K (1<K≤200). Then K lines follow, each gives a configuration in the format “N Q1 Q2 … QN”, where 4≤N≤1000 and it is guaranteed that 1≤Qi≤N for all i=1,⋯,N. The numbers are separated by spaces.
Output Specification
For each configuration, if it is a solution to the N queens problem, print YES in a line; or NO if not.